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We study the pump current and noise properties in an adiabatically modulated magnetic nanowire with
double domain walls �DWs�. The modulation is brought about by applying a slowly oscillating magnetic and
electric fields with a controllable phase difference. The pumping mechanism resembles the case of the quantum
dot pump with two-oscillating gates. The pump current, shot noise, and heat flow show peaks when the Fermi
energy matches with the spin-split resonant levels localized between the DWs. The peak height of the pump
current is an indicator for the lifetime of the spin-split quasistationary states between the DWs. For sharp DWs,
the energy absorption from the oscillating fields results in sideband formations observable in the pump current.
The pump noise carries information on the correlation properties between the nonequilibrium electrons and the
quasiholes created by the oscillating scatterer. The ratio between the pump shot noise and the heat flow serves
as an indicator for quasiparticle correlation.
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I. INTRODUCTION

Since the first experimental realization of the quantum
pump,1 research on quantum charge and spin pumping has
attracted increasing interest.2–19 The current and noise prop-
erties in various quantum pump structures and devices were
investigated such as magnetic-barrier-modulated two-
dimensional electron gas,4 mesoscopic one-dimensional
wire,6 quantum-dot structures,5,11,12 mesoscopic rings with
Aharonov-Casher and Aharonov-Bohm effect,7 and magnetic
tunnel junctions.10 Correspondingly, theoretical techniques
have been put forward for the treatment of the quantum
pumps �Refs. 2, 3, and 18, and references therein�. Of par-
ticular interest for the present work is the scattering matrix
approach for ac transport, as detailed by Moskalets and
Büttiker3 who derived general expressions for the pump cur-
rent, heat flow, and the shot noise for an adiabatically driven
quantum pumps in the weak pumping limit. The pump cur-
rent was found to vary in a sinusoidal manner as a function
of the phase difference between the two-oscillating poten-
tials. It increases linearly with the frequency in line with the
experimental finding. Recently, Park and Ahn5 obtained an
expression for the admittance and the current noise for a
driven nanocapacitor in terms of the Floquet scattering ma-
trix and derived a nonequilibrium fluctuation-dissipation re-
lation. The effect of weak electron-electron interaction on the
noise was investigated by Devillard et al.6 using the scatter-
ing matrix renormalized by interactions. Applying the
Green’s function approach, Wang et al.14–16 presented a non-
perturbative theory for the parametric quantum pump at ar-
bitrary frequencies and pumping strengths. Independently,
Arrachea17 presented a general treatment based on nonequi-
librium Green’s functions to study transport phenomena in
quantum pumps.

The shot noise properties of a quantum pump are impor-
tant in two aspects: understanding the underlying mecha-
nisms of the shot noise may offer possible ways to improve
pumping efficiency and achieve optimal pumping.4,6,10,12 On

the other hand the shot noise reflects current correlation and
is sensitive to the pump source configuration. For transport
in mesoscopic systems it is shown that shot noise carries
information beyond those obtainable from conductance
measurements20–23 such as quantum correlation of
electrons21 including spin-orbit coupling effect22 and
entanglement.23

In this work, we focus on the current and shot noise prop-
erties in a particular spin-dependent quantum pump based on
two domain walls �DWs� in a magnetic quantum wire
�shown in Fig. 1�. In general, the transport properties of mag-
netic DWs are actively discussed and realized for spintronics
applications �cf. Refs. 24–28, and references therein�. To our
knowledge however, a DW-based quantum pump has not yet
been considered. As shown by Dugaev et al.24 in a semicon-
ducting magnetic nanowire, double DWs separated by a dis-
tance less than the phase coherence length act as a spin quan-
tum well within which quasistationary spin-dependent
quantized states are formed. To generate in this structure a
spin-polarized dc at zero-bias voltage we propose to apply a
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FIG. 1. �Color online� �Upper panel� Schematics of the variation
in the magnetization M in a magnetic quantum wire with two DWs.
The easy plane is chosen as the x-z plane. DWs are separated by a
distance 2L. �Lower panel� The effective potential profile experi-
enced by spin-up and spin-down electrons. Quasilocalized energy
levels are marked by dashed lines. 2� is the DW width and � is the
chemical potential.
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slowly oscillating gate potential and a varying magnetic
field. In effect this means a periodic variation in the chemical
potential and the scattering strength of the DWs. In the spirit
of an adiabatic quantum pump, these varying parameters
should oscillate slowly relative to the carriers’ interaction
time with the DWs. The DWs themselves however should be
sharp and not adiabatic. This renders a strong scattering from
DWs and hence the formation of the quantum well. Here we
note that conventionally a DW is called adiabatic when its
extensions is larger than the Fermi wavelength of the
carriers.26 Therefore, for an experimental realization low-
density magnetic semiconductor-based nanowires are favor-
able, e.g., as reported in Ref. 25. In the following, we inves-
tigate the pumping current and shot noise characteristics of
this system and explore the pumping properties and the un-
derlying relation between the pump noise and quantum cor-
relation.

II. THEORETICAL FORMULATION

As shown schematically in Fig. 1, we consider a magnetic
nanowire with a magnetization profile consisting of two
DWs separated by the distance 2L. The phase coherence
length is larger than 2L. The width of each of the DWs is 2�.
The magnetization vector field M�z� in both DWs varies
within the x-z plane with the z axis being along the wire.
Thus, z is the easy axis and the x-z plane is the easy plane.
As illustrated in Fig. 1 we assume further that the magnitude
of M�z� is hardly changed but its direction, i.e., we can write
M�z�=Mn�z�, where n�z� is a unit vector field. We study the
case where the thickness and the width of the wire are small
such that only one size-quantized level �i.e., only a single
transverse subband� is populated. Such a system is achiev-
able for magnetic semiconductor-based structures with an
appropriately tuned carrier density. Adopting a continuum
model, we describe the independent carriers motion along
the wire coupled to the noncollinear magnetization field
M�z� with a strength determined by the Kondo-type coupling
constant J. The single-particle Hamiltonian reads then26

H = −
�2

2m

d2

dz2 − �nz�z��z − �nx�z��x, �1�

where �=JM, nx�z� is the x�z� component of n�z�, and m is
the carrier’s effective mass. � is tunable externally, e.g., by a
magnetic field. The potential profile is shown in Fig. 1. The
carriers’ wave functions are expressible as

�k�z� = ��eikz + Re−ikz��↑� + Rfe
�z�↓��e−iEt/�, z 	 − L ,

�k�z� = ��Ae�z + Be−�z��↑� + �Ceikz + De−ikz��↓��e−iEt/�,

�z� 	 L ,

�k�z� = �Teikz�↑� + Tfe
−�z�↓��e−iEt/�, z 
 L , �2�

where �↑ � ��↓ �� is the spin-up �spin-down� component of the
carrier states, k= �2m�E+JM��1/2 /�, and �= �2m�JM
−E��1/2 /�. As illustrated in Fig. 1, we measure the electron
energy E from the midpoint between spin-up and spin-down

band edges. The chemical potential � is set by the particle
density and can be tuned by an external gate X1. The
nonspin-flip �spin-flip� transmission and reflection coeffi-
cients T and R �Tf and Rf� as well as the constants A, B, C,
and D can be deduced from the solutions of Eq. �1� and from
the wave-function continuity requirements. We note that in-
stead of using the wave function we can equivalently utilize
the transmission and reflection amplitudes.29 For the system
depicted in Fig. 1 the transmission and the reflection ampli-
tudes T�� ,�� and R�� ,�� were derived and given explicitly
in Ref. 24 �same applies to �Tf and Rf��.

Following the standard scattering approach2,3,30 we intro-
duce the fermionic creation and annihilation operators for the
carrier scattering states. The operator âL�

† �E� or âL��E� cre-
ates or annihilates particles with total energy E and spin
polarization � in the left lead, which are incident upon the

sample. Analogously, we define the creation b̂L�
† �E� and an-

nihilation b̂L��E� operators for the outgoing single-particle
states. For magnetic semiconductor nanowires with a moder-
ate carrier density the chemical potential � is tunable to be in
one of the magnetically split subbands. In this case one
achieves a full spin polarization of the electron gas. There-
fore, the incident electrons are fully spin polarized. We note
that the spin-down part of the wave function decays outside
the double-DW regime �cf. Fig. 1�. Correspondingly, only
spin-up electrons tunnel through the barrier and contribute to
the conductance. Furthermore, the energy is conserved dur-
ing the tunneling process.31 As mentioned above, the wire is
such that a single one-dimensional subband is populated and
hence the transverse channels are not considered here. The
scattering matrix S is follows from the relation

�bL↑
bR↑

� = �R T�

T R�
�

S

�aL↑
aR↑

� , �3�

where as a result of the structure configuration symmetry the
relation T�=T and R�=R applies.32 States that decay expo-
nentially away from the DWs do not contribute directly to
the current flow and thus to the scattering matrix. We note
that the external magnetic field will be incorporated as an
induced change in � in Eq. �1�, i.e., as an effective change in
the height of DWs.

In the adiabatic regime the external perturbations vary
slowly on the scale of the carriers interaction time �Wigner
delay time� with the DWs structures. In this case one can
employ an instant scattering matrix approach, i.e., S�t� de-
pends only parameterically on the time t. To realize a quan-
tum pump one varies simultaneously two system parameters,
e.g.,2,3

X1�t� = X10 + X�,1ei��t−�1� + X�,1e−i��t−�1�,

X2�t� = X20 + X�,2ei��t−�2� + X�,2e−i��t−�2�. �4�

Here X1 is a measure for the carrier coupling energy to the
DWs �cf. Eq. �1�� ��JM which can be modulated by ap-
plying a low-frequency ��� alternating external magnetic
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field. X2 is the Fermi-level position �, which is adiabatically
varied by exposing the device to ac gate potential. X�,1 and
X�,2 are the corresponding oscillating amplitudes with phases
�1/2; X10 and X20 are the static �equilibrium� components.

Different from the widely discussed adiabatic spin pump
based on an normal metal/ferromagnet/normal metal junc-
tion, in our considered system, the direction of the magneti-
zation in the nanowire and DWs remain constant in time: it is
along z direction outside the double-DW regime and along
−z direction between the two DWs; the magnetization of the
DWs varies in the x-z plane �cf. Fig. 1�. Applying an alter-
nating external magnetic field, the strength of the magnetiza-
tion varies while out-of-plane precession is suppressed by
magnetic anisotropy. Hence, effects related to field-induced
magnetization precession18,19 are not considered here. For
the reason that the scattering process has only one spin chan-
nel �spin-up channel�, the pumped current is spin polarized,
as detailed below.

As in the work of Moskalets and Büttiker,3 in the weak
pumping limit �X�,j 
Xj0� and at zero temperature, the spin-
polarized pump current, noise, and heat flow could be ex-
pressed in terms of the scattering matrix as follows:

I� =
e�

2�
�

�j1j2

X�,j1
X�,j2

�S��
�

�Xj1

�S��

�Xj2

2 sin�� j1
− � j2

� , �5�

H� =
��2

4�
�

�j1j2

X�,j1
X�,j2

�S��

�Xj1

�S��
�

�Xj2

2 cos�� j1
− � j2

� , �6�

S�� =
e2�

�
	��� �

�j1j2

X�,j1
X�,j2

�S��

�Xj1

�S��
�

�Xj2

2 cos�� j1
− � j2

�

− �
�1j1�2j2

S��1

� S��2
X�,j1

X�,j2

�S��1

�

�Xj1

�S��2

�Xj2

�2 cos�� j1
− � j2

�
 . �7�

Here, we remark that capturing the sensitivity of the quan-
tum levels and scattering matrix to general perturbations is a
complicated problem entailing the treatment of a time-
dependent Hamiltonian. In the limit of an adiabatic pump
however, i.e., assuming that the scattering properties follow
the time-dependent potentials instantaneously, it is sufficient
to expand the time-dependent scattering matrix to first order
in the frequency. In addition, the amplitudes X�,j are chosen
small with respect to their residual values �e.g., the ampli-
tude of X2 is smaller than �� such that only the terms linear
in X�,j are relevant in an expansion of the scattering matrix,
which leads to a �bi�linear response in the amplitudes.2,3 The
pumped current and the noise relate to the parametric deriva-
tives of the scattering matrix of the system.2,3

For the consideration of the time-reversal symmetry
�TRS� in this system we remark the following. The �nondif-
fusive� scattering region consists of noncollinear localized
magnetic moments �that build the DWs� which reverse sign
upon time reversal. This operation leads, in general, to dif-
ferent scattering and pump properties.33 In our particular

case however, upon time reversal, the spin polarizations of
the states left and right to the DWs is reversed and outgoing
waves turn into incoming waves and vice versa. In total,
even though the individual wave functions and the scattering
region are modified upon a time reversal, we observe no
physical effect of this operation. The situation would be dif-
ferent, if, for example, the wire to the right side of the DWs
were paramagnetic. An elaboration on this point is given
below.

Here, we start by specifying the single-particle states and
calculate with those the T matrices. The time reversal of the
carrier wave functions �Eq. �2�� can be obtained as

�k�z� = ��e−ikz + R�eikz��↓� + Rf
�e�z�↑��eiEt, z 	 − L ,

�k�z� = ��A�e�z + B�e−�z��↓� + �C�e−ikz + D�eikz��↑��eiEt,

�z� 	 L ,

�k�z� = �T�e−ikz�↓� + Tf
�e−�z�↑��eiEt, z 
 L . �8�

Spin-up electrons tunnel through the double-domain-wall
structure by spin-flip-assisted transmission. When the time is
reversed, the angular momentum of the electrons, here the
spin, is reversed. As time flows backward, spin-down elec-
trons tunnel backward through the double-domain-wall
structure by spin-flip-assisted transmission. The time-
reversed scattering matrix is the Hermitian conjugate of the
original one with the transmission probability exactly identi-
cal. The nature of DWs is that of an angular momentum.
Time reversal reverses the sign of the localized moments,
forming thus an antidouble-domain-wall structure with a
spin-down well between the two domain walls. Outside the
domain-wall structure, the time-reversed magnetic nanowire
favors then a transport of spin-down electrons. In the adia-
batic limit, the applied external magnetic field is effectively
incorporated in the behavior of the DWs. Or it is equivalent
to say that the effect of the time-reversal transformation re-
verses the direction of the magnetic field and that reverses
the magnetic configuration. To contrast this situation with
what is established in the literature we recall that in Ref. 2
Brouwer considered a chaotic quantum dot with the conclu-
sion that the distribution of the pumped current for systems
with TRS and those without TRS are remarkably different. In
our consideration the strength of the particle flow is con-
served through tunneling, which is required by the continuity
equation for the Schrödinger equation. The time-reversed
tunneling would generate exactly the same pumped current
with the electron spin reversed. In our case, the distribution
of the pumped current is not a defined quantity or is a con-
stant.

Under the assumption that the scattering properties follow
the time-dependent potentials instantaneously, calculating the
parametric derivative of the scattering matrix is a numerical
issue as demonstrated in the literature3,4 including Brouwer’s
seminal approach.2 In our work, the stationary transmission
and reflection coefficients were analytical obtained along
with their parametric derivatives. The derivative of the scat-
tering matrix can be inferred from the stationary Hamil-
tonian: an infinitesimal change in the external parameters
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�here, the magnetization field and the Fermi energy� alters
the Hamiltonian and hence the scattering matrix. Accord-
ingly, in the adiabatic limit, we can find the derivative with-
out introducing a time-dependent Hamiltonian. In the linear-
response situation, all the sensitivity of the scattering matrix
to the perturbations lies in its parametric derivatives.

Considering an adiabatic pump, the modulation frequency
� is assumed to be extremely small relative to the interaction
time of the system. The current and noise vary linearly with
�, which is within the theory of an adiabatic pump3 and
demonstrated in experiment.1 The first term in Eq. �7� re-
flects the strength of the energy flow while the second one
describes the effect of correlations between �quasi�particles.
A convenient measure of the correlation is F= ��

4e2

S��

H�
, which

is the ratio of the dimensionless strength of the shot noise
S�� and the heat flow. The pump current and the noise expe-
rience sinusoidal and cosinusoidal variations as functions of
the phase difference ��=�1−�2, respectively, as is evident
in Eqs. �5� and �7�. The relative noise F does not vary with
��.

III. NUMERICAL RESULTS AND INTERPRETATIONS

In a magnetic nanowire with double sharp magnetic DWs,
quantum interference results in the formation of spin-split
quasistationary states localized mainly between the domain
walls.24 Consequently, the DWs conductance exhibits typical
resonant tunneling behavior. The width of the resonance
peaks is related to �, the lifetime of the quasistationary spin
quantum-well states. � is determined by the spin mixing due
to the spin noncollinearity at the DWs and can be quantified
by the spin-mixing parameter ��4m�� /�2. Decreasing �,
the lifetime of the localized spin quantum-well states in-
creases and the conductance resonance peaks become corre-
spondingly narrower. By oscillating the gate potential and
the magnetic field strength out of phase at zero bias, a quan-
tum pump is realized as the electronic system gains energy
from the oscillating scatterer. Absorption of an energy quan-
tum �� leads to creation of a nonequilibrium quasielectron-
hole pair. If they are scattered into different leads, their mo-
tion generates current.

In the adiabatic quantum pump based on domain walls in
a magnetic nanowire considered here, the two parameters are
the Fermi energy and the magnetization strength, which ex-
cite the pump. The Fermi energy can be modulated by an ac
gate voltage and the magnetization strength can be modu-
lated by an ac magnetic field. Analogously to the adiabatic
quantum electron pump theoretically proposed in Ref. 2 and
experimentally realized in the quantum-dot system,1 in our
case the oscillating magnetization acts as an oscillating en-
ergy potential �cf. Fig. 1�. The two-oscillating parameters we
view as two out-of-phase gating potentials, one from the ac
electric modulation and the other from the ac magnetic
modulation; on the other hand, the quantum-dot pump sys-
tem experiences two-oscillating gates. Electrons absorb or
emit an energy quantum from the oscillating mesoscopic
scatterer and those pumped to different directions contribute
to the current. The external electric gate voltage oscillating at
the spin-split quasistationary states excites pumping current

and gives rise to the resonance-type peaks in the current.
Within the two-gate picture, the DW quantum pump system
can be viewed semiclassically as in the turnstile quantum
dot—a classical analog of quantum pumping.34

Figure 2 shows the tunneling current without external
modulations as well as the current adiabatically pumped by
the modulations �Eq. �4�� as functions of the Fermi energy. In
Fig. 2�b�, the phase difference �� is set to be −� /2 to pro-
duce maximal pump current and to demonstrate the pumping
properties prominently. The conductance of the double-DW
structure possesses sharp resonances when the Fermi energy
matches the spin quantum-well states as seen in Fig. 2�a� and
Ref. 24. Similarly, in the circumstance of the adiabatic pump,
the electron can only tunnel through the spin-split levels be-
tween the two domains. Thus, the pump current, shot noise,
and heat flow show peak structures when the Fermi energy
matches the spin quantum-well states �see also Fig. 3�.

Comparing panels �a� and �b� in Fig. 2 we find that the
peak height �PH� of the pumped current decreases dramati-
cally as the width of the DWs is increased. For narrower
DWs, the peak width �PW� of the pumped current becomes
more comparable with that of the linear-response conduc-
tance while for wider DWs the former is much smaller than
the latter. To further reveal the trend, the PH and the PW at
half peak height of the pumped current versus � are given in
Figs. 4 and 5, respectively, for the second quasistationary
level counting from the spin quantum-well bottom. The peak
height decreases exponentially with the increase in �. In con-
trast to the linear-response process, the pumping process de-
pends strongly on the lifetime of the quasistationary, spin-
well states. When the period of the pump �p=2� /� exceeds
the lifetime of the quasistationary states, the pumped current

FIG. 2. �a� Linear-response conductance and �b� pump current I
as functions of the Fermi energy EF for different DW width �. The
parameters are chosen as follows: the coupling of the carriers to the
DWs is ��JM =2.4 meV; the amplitudes of the external pertur-
bations are ��=X1,�=0.1 meV=��=X2,�; and the distance be-
tween the DWs is L=15 nm. In panel �b�, the parameters are set in
the weak pumping regime.
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would be greatly suppressed. Here, we consider the limit of
small modulation frequencies, i.e., an adiabatic pump3 mean-
ing that �p is relatively large. Therefore, the strength of the
pumped current decreases exponentially with the widening
of the DW, i.e., the decrease in the lifetime of the quasista-
tionary states.

In the adiabatic limit, i.e., when the frequency of the po-
tential modulation is small compared to the characteristic
times for traversal and reflection of electrons, the photon side
band EF�Er��� broadens the current peak instead of
forming new peaks as in Ref. 5. In principle, without the
external modulations the resonant tunnelling current is
broadened due to spin mixing at the DWs. If the spin-mixing
amplitude is finite �i.e., ��0�, spin-up carriers transverse
resonantly the DWs and the conductance peaks are broad-
ened by the spin-mixing mechanism. For very narrow DWs
the residual broadening can then be attributed to the sideband
formation.

In the theory of an adiabatic quantum pump, the nearest
sidebands corresponding to particles which have gained or
lost a modulation quantum �� contribute to the pumped cur-
rent. Hence, the pumped current peak is broadened by 2��
at the resonant levels. The width of peaks in the linear-
response conductance due to spin mixing at the DWs is en-

hanced for wider DWs �cf. Fig. 5�. In comparison, the broad-
ening of the pumped current peaks caused by the sideband
formation is less pronounced for varying DW extensions. For
very sharp DWs however the effect of the sideband forma-
tions might be as large as the contribution from the DWs
spin mixing.

To demonstrate the quantum pump noise properties in this
particular structure, we present the numerically obtained
pump current I, shot noise S, heat flow H, and relative pump
noise F as functions of the Fermi energy in Fig. 3. The prop-

FIG. 3. �a� Pump current I, �b� pump noise S, �c� heat flow H,
and �d� relative noise F as functions of the Fermi energy EF for
different DW distance L. DWs width is �=2 nm and the other
parameters are the same to Fig. 1�b�.

FIG. 4. The PH of the pumped current as a function of the DW
width � for the second quasistationary level counting from the spin-
well bottom. The parameters are the same to Fig. 1�b�.

FIG. 5. The PW at half peak height of the linear-response con-
ductance �dot� and the pumped current �square�, respectively, as a
function of the DW width � for the second quasistationary level
counting from the spin-well bottom. The parameters are the same to
Fig. 1�b�.
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erties for different DW distance L are compared. The pump
current, shot noise, and heat flow show peak structure when
the Fermi energy matches with the resonant energy levels of
the structure. The peak position changes accordingly as the
resonant levels shift to lower energy when we increase the
DW distance L. The ratio between the pump shot noise and
the heat flow F reflects the strength of the quantum correla-
tion of the system. F shows bifurcated peaks with the inter-
mediate minima at the resonant Fermi energies.

The pump noise properties can be interpreted as follows.
At the resonant Fermi energy, transport processes and thus
the electron-electron correlation achieve maximal strength.
The nonequilibrium quasielectrons and holes created by the
oscillating scatterer move in different directions to generate a
net dc. Therefore, the antibunching correlation between elec-
trons and holes always exerts a negative contribution to the
shot noise regardless of the direction of the dc, which gives
rise to the minimum valley in the relative noise. At the edges
of the resonant state, there is a slight heat flow in the dissi-
pation regime without actual particle motion. In this region,
the heat flow dominates the quasiparticle correlation giving
rise to full heat flow noise with F=1. In the intervals be-
tween resonant levels, heat flow, and quasiparticle correla-

tion both approach a background level inducing zero pump
shot noise.

IV. CONCLUSIONS

In summary, a quantum pump device involving domain
walls in a magnetic nanowire is investigated. For two inde-
pendent adiabatically modulated parameters of this device a
finite net charge current is transported. The quantum pump-
ing mechanism resembles the quantum pump based on two-
oscillating-gate quantum dot and is to some extent analogous
to the classical turnstile picture. The pumping current, heat
flow, and shot noise demonstrate peak structures at the spin-
split quasistationary levels in the spin quantum well formed
by the domain walls. The strength of the pump current de-
creases exponentially with the decrease in the
quasistationary-state lifetime. The latter is governed by the
width of the domain wall. The sideband formation during the
pumping process is sizable particularly for narrow domain
wall for which level broadening due to spin mixing is rela-
tively small. The correlation between quasielectrons and
quasiholes shows antibunching behavior as they move in op-
posite directions. This is concluded from the ratio between
the pump shot noise and the heat flow.
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